ORSANCO Spill Response

Joint RRT4/5 Meeting October 16-18, 2018

Ohio River Valley Water Sanitation Commission

- Established by Compact (1948)
- Ratified by Congress
- Eight signatory states • IL, IN, NY, KY, OH, PA, VA, WV

What We Do

• Our mission is to protect the uses of the Ohio River.

• We monitor the river to assess if it is:

- 1. Safe for drinking water
- 2. Safe to recreate
- 3. Safe to eat the fish
- 4. Safe for aquatic life

Role in Spill Response

- Communications
- Time-of-Travel Modeling
- Water Quality Monitoring
- Analytical Support

2016 Spills Summary

- 590 spill reports received by ORSANCO in 2016
 - Includes releases to water, air, and land
- 227 involved releases to the Ohio River or lower reaches of tributaries
 - Most were minor releases
- Most common materials released:

Material Name	# of Spills	Material Name	# of Spills
Unknown Oil	92	Motor Oil	5
Hydraulic Oil	34	Coal Slurry	3
Diesel Fuel	26	Fuel Oil	3
Crude Oil	8	Paint	3
Lube Oil	8	Bilge Slops	3
Gasoline	8	Mineral Oil	3

Communications

- Rotating 24/7 spill duty
 - Receive spill reports via National Response Center (NRC) or direct calls
- Facilitate interstate communication
 - State and Federal Agencies
 - Drinking Water Intakes
 - Industrial Intakes
 - Media

Spill Notification

- Emergency Response Directory
 - State/Federal contacts
 - Water utilities
 - Key river features
- Spills Email Distribution List
- Phone Notifications
 - Water utilities and ER agencies
- Coordinate Conference Calls
 - Available to coordinate calls when necessary

Key Questions?

- What?
- Where?
- How much?
- Actions taken?
- Concentration?

- When will it arrive at downstream intakes?
- How long is the plume?

Time-of-Travel Modeling

- Ohio River Spill Modeling System
 - Input date, time, amount, duration, decay
 - Uses daily HEC-RAS flow file from NWS
- Predicts plume time-of-travel
 - Leading edge; peak; trailing edge
- Estimates pollutant concentration
- Utilized to:
 - Inform water utilities and others of spill location
 - Inform sampling crews where to monitor

On-River Spill Tracking

- Water quality sampling to track plume
 - Shore-based (access points, locks & dams)
 - Boat-based (safety limitations)
- Provide coordination of multi-agency sampling efforts
- Available Resources
 - Boats flow-through monitoring
 - Multi-parameter datasondes
 - Water and sediment samplers
 - Flourometers
 - Biological sampling

Analytical Support

- Organics Detection System (ODS)
 - Daily analysis of water samples for volatile organic compounds for <u>spill detection</u>
 - 17 stations (13 mainstem + 4 tribs)
 - Detect thousands of compounds
 - Calibrated for 30 VOCs
- Provide coordination of laboratory services
 - Within ODS network
 - Contract laboratories

Gas Chromatograph Mass Spectrometer

Urea Ammonia Nitrate Barge Incident

December 19, 2017 Downstream of Cincinnati, OH

UAN Barge Incident - Initial Report

- Notification December 19 (8:51)
 - NRC report indicated barge "cracked in half" while offloading (ORM 478.7)
 - Urea ammonia nitrate was discharging into the river
 - Amount of release initially not reported
- Offloading facility located in Ohio (Region 5)
- Ohio River owned by KY (Region 4)
- Initial response included OEPA, KY DEP, US EPA (R5) and USCG

ORSANCO Role

- ORSANCO received phone notifications from OEPA, KY DEP, USCG
- ORSANCO notified Louisville Water Company
 - Sent notification via spills distribution list
 - Additional discussions with emergency response and drinking water agencies (KY DOW, IDEM, IL EPA)
- Time-of-Travel modeling requested by KY DEP, LWC, USCG, Clifty Creek Power Plant
- Assisted with initial WQ monitoring plan development
- Conducted/coordinated WQ sampling
- Hosted daily conference focused on water quality issues

Initial Water Quality Sampling

- RP's Contractor CTEH
 - Collected WQ samples for certified analysis daily at four locations
 - Upstream, at incident location, peak locations, leading edge
 - Approached followed daily from 12/19 thru 12/23
- ORSANCO / Louisville Water Company
 - LWC raised concerns regarding ability to maintain treatment
 - Requested assistance to conduct longitudinal field screening
 - Longitudinal surveys conducted 12/20 and 12/21
 - Peak concentration dropped from 3.1 to 1.4 mg/L

Fixed Station Monitoring

- Initial time-of-travel model estimated travel time to Louisville at 9 days (i.e. 12/28)
- Precipitation increased river velocities significantly.
 - Moved up projected arrival at Louisville by 2.5 days (i.e. mid-day on 12/25)
- Transitioned to fixed station monitoring at Markland Locks & Dam
 - CTEH sampled overnight from 12/23 to 12/24

Markland Results

- Sampling initially from lock wall; repositioned to hydro side
- First detection: 19:45 on 12/23
- Collected samples hourly
- Peaked near 1 mg/L
- Discontinued mid-day on 12/24 to transition equipment to Westport site

Silver Linings

- Significant rain diluted ammonia concentration
- Low water demand on Christmas Day allowed LWC intake to be shut down much longer than normally possible
- Lots of time-of-travel data to calibrate spill model.
- Louisville Water, through proactive treatment management, met all compliance requirements
- Evansville also able to provide adequate treatment (peak 0.26 mg/L on 12/29)

Lessons Learned - Notification

- Notifications to ORSANCO are sometimes delayed or fail to occur
- Reasons:
 - 1. ORSANCO is not automatically notified unless NRC report is generated.
 - 2. Notification for fires and transportation incidents reported to 911, but not always NRC
 - 3. Barge sinkings do not automatically result in generation of NRC report
 - 4. Reporting to NRC is requirement of responsible party. The RP may not be immediately known or notified.

Lessons Learned - On-Scene Response

- On-scene presence by ORSANCO can be helpful in some situations
- Reasons:
 - 1. Receive latest information first-hand from Incident Command (IC)
 - 2. On-site for further discussions outside of regularly scheduled IC meetings
 - 3. Represent water user interests at IC
 - 4. Visual observation of conditions and incident status can lead to improved communications and on-river response when necessary.

Lessons Learned - Modeling

- Limitations of ORSANCO spill model identified.
- Spill time-of-travel model performed very well during UAN spill incident.
- Reasons:
 - 1. Low-flow conditions during Parkersburg fire incident highlighted model limitation to 9-day simulation.
 - 2. UAN release first opportunity to validate model
 - 3. Estimated time-of-arrival at LWC within 1 hour of actual arrival

Lessons Learned - WQ Sampling

- Collecting WQ samples early in response is critical.
- Non-hazardous/Unregulated \neq Not a problem
- ORSANCO resources can add to overall response capabilities.
- Reasons:
 - 1. Need to characterize location and magnitude of the release to determine potential severity (eliminate unknowns)
 - 2. Downstream users need information to make management decisions
 - 3. In the absence of information, decisions will be made on assumptions
 - 4. Assumptions may be overly conservative to ensure readiness for worst case

Lessons Learned - WQ Analysis

- Consider split-sample analyses for quicker data turn-around to inform decision making.
- Utilization of ODS labs or field methods can speed-up data turn-around
- Reasons:
 - 1. Certified lab analysis is typically required for spill responses
 - 2. Turn-around times are often measured in days
 - 3. Water users need information to make management decisions
 - 4. Split-sample analyses for certified results and screening methods can provide timely data to inform management decisions.

Lessons Learned -Communication/Coordination

- Communicating early in a response with state drinking water personnel can improve effectiveness.
- ORSANCO can play a vital role in communicating and coordinating efforts with responders and affected users.
- Reasons:
 - 1. Early engagement of drinking water personnel can eliminate duplication of efforts and ensures everyone is on the same page.
 - 2. ORSANCO can serve as the link between response personnel and affected water users.

Questions?

Contact Information Sam Dinkins sdinkins@orsanco.org 513/231-7719